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An innovative technique for green tea’s quality determination was developed by means of
metabolomics. Gas-chromatography coupled with time-of-flight mass spectrometry and multivariate
data analysis was employed to evaluate the quality of green tea. Alteration of green tea varieties and
manufacturing processes effects a variation in green tea metabolites, which leads to a classification
of the green tea’s grade. Therefore, metabolic fingerprinting of green tea samples of different qualities
was studied. A set of ranked green tea samples from a Japanese commercial tea contest was analyzed
with the aim of creating a reliable quality-prediction model. Several multivariate algorithms were
performed. Among those, the partial least-squares projections to latent structures (PLS) analysis
with the spectral filtering technique, orthogonal signal correction (OCS), was found to be the most
practical approach. In addition, metabolites that play an important role in green tea’s grade classification
were identified.
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INTRODUCTION

Tea is the most popular beverage, and it is made from the
leaves of theCamellia sinensisplant. There are three main types
of tea on the basis of length of oxidation reaction and how the
leaves are processed; they are black tea, oolong tea, and green
tea. Black tea is the most processed and has the greatest
oxidation. Oolong tea is partially oxidized and dried. Green tea
undergoes very little processing without oxidation. In green tea,
the enzymes are inactivated at an onset temperature to prevent
oxidation of the leaf polyphenols. Green tea is very popular in
Southeast Asian countries, not only because of its effective
pharmaceutical activity (1) but also because of its excellent taste.
The market price ranges from $1 dollar to over $100 per 100 g
(2). Green tea taste is determined by the kind of tea tree,
plucking time, and the cultivation method (3). The brothy taste
of the tea brew originates in amino acids, especially the unique
theanine which accounts for about 60-70% of the amino acids
in tea leaves (4). Its astringent taste is attributed to catechin
(tannin) while its bitter taste is attributed to caffeine. Volatile
compounds are the main contributors to differences in odors of
teas of different grades (5-6). The cultivar differences, envi-
ronmental effects, and methods of processing all suggest that
the quasi-steady-state amounts of intermediate pathway me-
tabolites and the end accumulation of terminal metabolites

should also vary. To follow these changes, metabolites must
be monitored both spatially and temporally (7-9). Sensory eval-
uation of tea quality has traditionally been assessed by highly
trained specialists who evaluate product quality on the basis of
leaves’ appearance, aroma, color, and taste of the brew (3).
Because it takes years of experience to acquire these skills, it
would be advantageous to determine product quality by some
form of nonhuman measurement. Chemical analysis seems to
be the most reliable method for estimating the quality of green
tea (10). From the combination of instrumental analytical meth-
ods with powerful computer-driven pattern recognition tech-
niques, new capabilities for quality control and characterization
of complex materials have been realized (11-12). The basic
concept of this new approach is fast analysis by using chemical
fingerprints instead of the characterization on a limited number
of individual compounds. In chromatography, fingerprinting
based on pattern recognition methods has been used in various
analytical areas, for example, food and nutritional fields as pro-
cess monitoring and control (grading of raw materials, routine
online quality checks, or determining the process by which a
product was made) (13) and geographical origin (determining
sources of ingredients by chemical composition and tracing
origin of finished products by flavor and aromatic components)
(3).

This research is aimed at developing a fast and reliable model
to determine quality/grade of green tea samples. A set of known-
rank samples from the Kansai tea contest, Japan, was utilized
to create a model with the aim of using this model to predict
the quality of unknown samples. A combination of gas chro-
matography and mass spectrometry (GC/MS) allows the iden-
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tification and robust quantification of several hundred metabo-
lites within a single extract. Hydrophilic primary metabolites
were primarily studied since there are stable protocols for
machine setup and maintenance, sample preparation and analy-
sis, and chromatogram evaluation and interpretation for these
(14-15). In MS-based metabolomics studies, the identification
of differences between samples has normally involved a variety
of multivariate tools, such as principal component analysis
(PCA), hierarchical cluster analysis (HCA) (16), projection to
latent structures (PLS) (17), and discriminate analysis (18). PCA,
which is probably the oldest and best known technique used
for exploratory multivariate analysis, was first selected as the

data visualization tool. Subsequently, partial least-squares
projection to latent structures (PLS) was employed to verify
the relationship between two groups of related variables, in this
case, correlation between green tea’s metabolites and its quality.

MATERIALS AND METHODS

Materials. The dried leaves after processing of 53 ranked first-crop
tea samples (spring-harvested, called “Ichi-ban-cha” in Japanese) from
the 2005 contest were analyzed. These tea samples enrolled in a
commercial tea contest among the Kansai area were obtained from

Figure 1. PCA analysis. (a) Score plot of all 53 ranked samples. Data were preprocessed with mean-center without transformation. Color spots are
graded from dark blue to lighter blue in parallel with their ranks varying from highly ranked to lowly ranked samples. (b) Score plot of only the best and
worst ranked samples. Once again, data were preprocessed with mean-center without transformation. The first-ranked samples are represented by dark
blue while light blue represents the lowest ranked samples.
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the Tea branch of the Nara Prefecture Agricultural Experiment Station.
Ranking of teas was determined by the total scores of the sensory tests,
which are leaf appearance, smell, and color of the brew and its taste,
judged by professional tea tasters.

Reagents.All chemical used in this study were analytical grade.
Methanol and chloroform used as extraction solvents, ribitol (diluted
with deionized water to a concentration of 0.2 mg/mL), and pyridine
used as a solvent were purchased from Wako (Osaka, Japan).
Methoxyamine hydrochloride was purchased from Sigma (WO, United
States).N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) was
purchased from GL Science, Inc. (Tokyo, Japan).

Sample Preparation for GC/MS Analysis.Dried tea leaves (30
mg) in 2-mL Eppendorf tubes were freeze-dried and ground with a
Retsch ball mill (20 Hz, 1 min). Hydrophilic primary green tea
metabolites were extracted using a single-phase solvent mixture of
MeOH, H2O, and CHCl3 in ratio of 2.5/1/1 (v/v/v), respectively. The
mixture was shaken with 60µL ribitol used as an internal standard for
5 min and was centrifuged at 16 000g, 4 °C, for 3 min. Subsequently,
900µL of the supernatant was transferred to a 1.5-mL Eppendorf tube.
By adding 400µL of water purified using a Millipore Milli-Q system
(Berdford, MA) vortex and centrifuge, 400µL of polar phase was then
transferred to another 1.5-mL Eppendorf tube capped with pierced cap.
The extract was dried in a vacuum centrifuge dryer until dryness
(overnight).

For derivatization, 50µL of methoxyamine hydrochloride in pyridine
(20 mg/mL) was added as a first derivatizing agent. The mixture was
incubated at 30°C for 90 min. A second derivatizing agent, 100µL of
N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA), was added and
incubated at 37°C for 30 min. A 1µL of sample was injected in split
mode (25:1, v/v)

GC/MS Analysis.For the metabolites’ identification and tea’s grade
classification, the gas chromatograph used in this study was a 689 CN
(Agilent Co., Palo Alto, CA) equipped with a 30 m× 0.25 mm i.d.
fused silica capillary column coated with 0.25-µm CP-SIL 8 CB low
bleed (Varian Inc., Palo Alto, CA) coupled with a Pegasus III TOF
mass spectrometer (LEGO, St. Joseph, MI) and a 7683B series injector
(Agilent Co., Palo Alto, CA) as an autosampler. The injection
temperature was 230°C. The helium gas flow rate through the column
was 1 mL/min. The column temperature was held at 80°C for 2 min
isothermally and then was raised by 15°C/min to 330°C and was
held there for 6 min isothermally. The transfer line and the ion source
temperatures were 250°C and 200°C, respectively. Ions were generated
by a 70 kV electron impact (EI), and 20 scans per second were recorded
over the mass range 85-650 m/z. The acceleration voltage was turned
on after a solvent delay of 250 s.

Data Preprocessing.For data preprocessing, raw chromatographic
data (Pegasus file, *.peg) were converted into ANDI files (Analytical
Data Interchange protocol, *.cdf). With the ANDI format, the conver-

Figure 2. Relationship between measured and predicted green tea quality (ranking) of PLS model (a) for 46 green tea samples as a training set and
(b) for all 53 ranks of both testing (marked by circles) and training sets.
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sion and transfer of data between different mass spectral data systems
could be done. The converted files (ANDI) were subjected to a data
preprocessing procedure: the data points were adjusted in detail. In
addition, data transformation could also be done to achieve the best
chromatographic data. The total ion chromatographic data were then
extracted and saved as ANDI format files without fragment data. These
files were imported to commercially available software, LineUp
(Informatrix, Inc, WA), for multiple alignment of the retention times.
The misaligned peaks were aligned using a correlation optimized
warping algorithm (19).

MultiVariate Analysis of GC/MS.Principle component analysis
(PCA) was initially selected to comprehend the relationships expressed
in terms of similarity or dissimilarity among groups of multivariate
data. Commercially available software, Pirouette (Informatrix, Inc.),
was applied for this purpose. Projections to latent structures by means
of partial least square, PLS (SIMCA-P version 11.0, Umetrics, Umeå,
Sweden), was then chosen to create a prediction model. PLS finds a
relation between two sets of variables: observations and responses.
Further, orthogonal signal correction (OSC) was used to remove
unassociated data (20,21-23).

Significant compounds were identified by comparing their mass
spectra with those in libraries (the NIST library and an in-house library
prepared from authentic standard chemicals). Moreover, the library
provided by the Max-Planck Institute of Molecular Plant Physiology,
Germany was also used for this purpose (http://www.mpimp-golm-
.mpg.de/mms-library/index-e.html).

RESULTS AND DISCUSSION

Metabolite Fingerprinting with PCA. The 53 ranked
samples were divided into three groups ranked according to their
grades. It was found that the classification of these three groups
was not distinct (Figure 1a). Highly ranked samples did not
show an obvious cluster separate from the lowly ranked samples
since the variation in each group of samples was too high as
there were about 20 samples in each defined group. However,
an additional analysis was done with only the best and the worst
ranked samples. It was found that some discrimination did exist
between these two groups (Figure 1b). The first ranked sample
consisted of a greater amount of amino acids, quinic acid,
phosphoric acid, ribose, and arabinopyranose while the key
metabolites for the lowest ranked sample were mainly sugars
(fructose, glucose, and mannose). This illustrated that a me-
tabolomics analysis could be useful in the quality determination
of green tea.

Quality-Predictive Model. Metabolite Fingerprinting with
Projection to Latent Structure PLS.PLS was considered as an
algorithm to create a quality prediction model for green tea. A
relationship between sample’s metabolite profiling (matrixX)
and its quality (matrixY) was observed. Samples were divided
into groups of training and testing sets. The samples ranked

Figure 3. Relationship between measured and predicted green tea quality (ranking) of PLS model with orthogonal signal correction method (a) for 46
green tea samples as a training set and (b) for all 53 ranks of both testing (marked by circles) and training sets.
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2nd, 12th, 22nd, 32nd, 42nd, and 52nd were excluded as a
testing set for model validation. None of the variables were
transformed; all of them were centered and scaled to Pareto

variance to decrease chromatographic data noise effects (24).
The model complexity, that is, the number of latent factors in
the PLS model, can be determined by cross-validation. The
optimum number could be found at the balance between fit (to
the model) and predictive ability. Additionally, the PLS model
is validated with a test set in which the root mean squared error
of prediction (RMSEP) is computed. Two significant compo-
nents were extracted, describing 80.7% of the variation inY
(R2Y ) 0.807) and predicting 31.3% of the variation inY (Q2Y
) 0.313) according to cross-validation. The test set was
subsequently predicted into the PLS model resulting in a
predictive accuracy for the test samples (RMSEP) 10.23) over
the model estimations on the basis of training set samples
(RMSEP) 6.91) (Figure 2). The predictive ability of this PLS
model was rather poor. This might be due to interference by a
set of X variables that are not associated in the prediction of
Y-values. Such variables cause imprecise predictions and also
affect the robustness of the model (21).

Metabolite Fingerprinting with Projection to Latent Structure
Assisted by Orthogonal Signal Correction (PLS_OSC).To
enhance the predictive power of the multivariate calibration
model, a spectral filtering technique was applied. OSC is a PLS-
based solution that removesX-data variation that is unrelated
to the modeling ofY. With OSC, one component is removed at
a time from matrixX using the nonlinear iterative partial least-
squares (NIPALS) algorithm (21-22). By removing two OSC
components from the prior PLS model, Q2Y was increased to
0.500. The remaining sum of squares was 41.40%. Hence,
58.60% of the variation inX was not related toY and was
removed. Prediction after subjecting a test set into the model
now made the predictive accuracy for the test samples (RMSEP
) 8.13) to be in a good agreement with the model estimations
on the basis of the training samples (RMSEE) 6.57) (Figure
3). Furthermore, variables with high relevance for explaining
Y were also identified from VIP (variable importance in the
projection) values. Large VIP values, more than 1, are the most

Table 1. Primary Metabolites Detected by GC-TOF/MS from Japanese
Green Tea

name retention timea mass fragmentb,c derivatizedd

Organic Acids
oxalic acid 5.68 116, 147, 190, 218 TMS(×2)
phosphoric acid 7.11 133, 211, 299, 314 TMS(×3)
succinic acid 7.56 147, 172, 247 TMS(×2)
malic acid 9.1 147, 189, 233, 245, 307, 335 TMS(×3)
shikimic acid 11.53 117, 147, 292 TMS(×1)
citric acid 11.63 147, 273, 347, 375, 465 TMS(×4)
quinic acid 11.88 147, 255, 345, 436 TMS(×1)

Amino Acids
serine 7.96 100, 147, 188, 204, 218, 278, 306 TMS(×3)
threonine 8.20 117, 147, 219, 291, 320 TMS(×3)
aspartic acid 9.38 100, 147, 218, 232, 306, 334 TMS(×3)
pyroglutamic acid 9.48 156, 230, 258 TMS(×2)
threonic acid 9.65 147, 220, 292, 319 TMS(×4)
glutamic acid 10.18 128, 147, 156, 246, 348 TMS(×3)
glutamine1 11.00 147, 203, 227, 317 TMS(×4)
theanine 11.28 159, 183, 273, 285
glutamine2 11.36 156, 203, 245, 347 TMS(×3)

Sugars
fructose1 11.95 103, 147, 217, 307, 364 TMS(×5)
fructose2 12.01 103, 217, 307, 364 TMS(×5)
glucose MEOX2 12.13 147, 160, 205, 217, 319 TMS(×5)
mannose 12.28 103, 147, 205, 217, 319 TMS(×5)
sucrose 16.36 217, 271, 319, 438 TMS(×8)
arabinopyranose 16.60 147, 217, 343, 434, 479 TMS(×4)

Others
caffeine 12.19 109, 194
inositol 13.43 147, 191, 217, 305, 318 TMS(×6)
silane 17.50 179, 355, 368, 488 TMS(×5)

a Retention time (min). b Ions in boldface indicate the most intense product ion.
c Lists of first five ions with the highest intensity. d Number of hydrogen atoms
derivatized.

Figure 4. Bar chart showing influence of variables used to create a quality predictor for green tea (Y-axis is value of variable importance in the
projection, VIP).
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relevant for explainingY. Quinic acid, amino acids (especially
theanine), and groups of sugars were found to be significant in
creating a quality prediction model for green tea (Figure 4).

Green Tea Metabolic Profiling. Green tea samples were
analyzed to acquire information about the main metabolites of
green tea dried leaves. Yamatocha, from the Tea branch of the
Nara Prefecture Agricultural Experiment Station, which is
accepted as a high-grade tea, was used. Analytical materials
and methods were the same as above. Since resolution of
chromatogram is satisfactory, peak areas of each metabolite were
calculated by total ion count (TIC). Subsequently, every peak
of identified metabolite was normalized to the internal standard,
ribitol. From the analysis, it was found that dried leaves of green
tea comprised many compounds, mainly organic acids, amino
acids, and sugars (both monosaccharides and disaccharides), as
shown inTable 1. Compounds detected in the highest amounts
were sugars, especially sucrose and fructose. Theanine, which
is the key amino acid contributing to the unique taste of tea,
was also detected. Several other amino acids could be identified
in the extract but in very small amounts. Many compounds still
remain unidentified (secondary metabolites). About 23 identified
metabolites were identified from the chromatogram.

In summary, this study demonstrates that metabolomics
analysis using GC/MS combined with chemometrics provides
some useful information in the study of green tea. It provides
information on all interested metabolites in a single-run analysis
whereas earlier analysis focused on specific groups of com-
pounds that were believed to be significant for certain functions
such as antioxidant compounds for medical purposes and
catechins and other phenolic compounds for taste and aroma.
Since characteristics of green tea might not be derived from
single metabolites but from combinations, metabolomics is an
excellent solution. This study also illustrates that green tea can
be added to the list of products for which chromatography and
spectrometry constitute a consistent quick and informative
screening technique. In addition, metabolite fingerprinting also
allowed the assessment of the quality of tea without standard
samples. Nevertheless there may still be some problems to be
overcome, since for green tea fingerprinting, an important factor
in discriminating tea grades is the quantity of metabolites.
Therefore, we need to ensure that these differences derive from
variation of the samples themselves. Experimental repeatability
must be robustly ensured. Homogeneity of samples is also
important since there is a wide variation in components among
leaf parts.
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